Abstract
Under suitable hypotheses, we prove that a form of a projective homogeneous variety G/P defined over the function field of a surface over an algebraically closed field has a rational point. The method uses an algebro-geometric analogue of simple connectedness replacing the unit interval by the projective line. As a consequence, we complete the proof of Serre’s Conjecture II in Galois cohomology for function fields over an algebraically closed field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.