Abstract
We show by a general argument that periodic solutions of the planar problem of three bodies (with given masses) form one-parameter families. This result is confirmed by numerical investigations: two orbits found earlier by Standish and Szebehely are shown to belong to continuous one-parameter families of periodic orbits. In general these orbits have a non-zero angular momentum, and the configuration after one period is rotated with respect to the initial configuration. Similar general arguments whow that in the three-dimensional problem, periodic orbits form also one-parameter families; in the one-dimensional problem, periodic orbits are isolated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.