Abstract
We extend the notion of lattice polarization for K3 surfaces to families over a (not necessarily simply connected) base, in a way that gives control over the action of monodromy on the algebraic cycles, and discuss the uses of this new theory in the study of families of K3 surfaces admitting fibrewise symplectic automorphisms. We then give an application of these ideas to the study of Calabi-Yau threefolds admitting fibrations by lattice polarized K3 surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.