Abstract

We study tilings of polygons $R$ with arbitrary convex polygonal tiles. Such tilings come in continuous families obtained by moving tile edges parallel to themselves (keeping edge directions fixed). We study how the tile shapes and areas change in these families. In particular we show that if $R$ is convex, the tile shapes can be arbitrarily prescribed (up to homothety). We also show that the tile areas and tile ``orientations'' determine the tiling. We associate to a tiling an underlying bipartite planar graph $G$ and its corresponding Kasteleyn matrix $K$. If $G$ has quadrilateral faces, we show that $K$ is the differential of the map from edge intercepts to tile areas, and extract some geometric and probabilistic consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.