Abstract
What is the dimension of a smooth family of complex Hadamard matrices including the Fourier matrix? We address this problem with a power series expansion. Studying all dimensions up to 100 we find that the first order result is misleading unless the dimension is 6, or a power of a prime. In general the answer depends critically on the prime number decomposition of the dimension. Our results suggest that a general theory is possible. We discuss the case of dimension 12 in detail, and argue that the solution consists of two 13-dimensional families intersecting in a previously known 9-dimensional family. A precise conjecture for all dimensions equal to a prime times another prime squared is formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.