Abstract

AbstractWe introduce and study families of finite index subgroups of the modular group that generalize the congruence subgroups. Such groups, termed ϕ‐congruence subgroups, are obtained by reducing homomorphisms ϕ from the modular group into a linear algebraic group modulo integers. In particular, we examine two families of examples, arising on the one hand from a map into a quasi‐unipotent group, and on the other hand from maps into symplectic groups of degree four. In the quasi‐unipotent case, we also provide a detailed discussion of the corresponding modular forms, using the fact that the tower of curves in this case contains the tower of isogenies over the elliptic curve defined by the commutator subgroup of the modular group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.