Abstract

The index bundle of the Overlap lattice Dirac operator over the orbit space of lattice gauge fields is introduced and studied. Obstructions to the vanishing of gauge anomalies in the Overlap formulation of lattice chiral gauge theory have a natural description in this context. Our main result is a formula for the topological charge (integrated Chern character) of the index bundle over even-dimensional spheres in the orbit space. It reduces under suitable conditions to the topological charge of the usual (continuum) index bundle in the classical continuum limit (this is announced and sketched here; the details will be given in a forthcoming paper). Thus we see that topology of the index bundle of the Dirac operator over the gauge field orbit space can be captured in a finite-dimensional lattice setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.