Abstract

BackgroundWhether or not animals habituate to repeated exposure to predator scents may depend upon whether there are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area.Methodology/Principal FindingsWe evaluated the effects of urine and feces independently and expected that urine would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine, X = 986.75±3.97 g food remained as compared to the tap water control, X = 209.0±107.0 g (P<0.001). Macropodids fled more when encountering a urine treatment, X = 4.50±2.08 flights, as compared to the control, X = 0 flights (P<0.001). There was no difference in effect between urine or feces treatments (P>0.5). Macropodids did not habituate to repeated exposure to predator scents, rather they avoided the entire experimental area after 10 days of trials (R 2 = 83.8; P<0.001).Conclusions/SignificanceResponses to urine and feces were indistinguishable; both elicited fear-based responses and deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species following repeated anti-predator conditioning, However, this is the first time this response has been experimentally observed among medium or large vertebrates − where a local response is observed spatially and an area effect is revealed over time.

Highlights

  • Many animals assess risk from intra-specific scent cues left behind by potential predators

  • A maximum of 45 individuals participated during the first day, and by day 11, no kangaroos elected to participate in the experiment (X = 27.3664.27 individuals)

  • There were no detectable flight differences when encountering a fecal treatment, X = 6.6763.055 flights (P = 0.444); the control was different to urine (P,0.001) and to feces (P,0.001)

Read more

Summary

Introduction

Many animals assess risk from intra-specific scent cues left behind by potential predators. Urine and anal scent gland exudates contain a broad class of infochemicals [2], including steroid alcohols and carrier proteins, that may synergistically indicate the: reproductive status [3], territorial status [4], age [5] social and nutritional status [6], and a time-stamp of an animal’s presence (time since void/ excretion) [7] These complex properties likely evolved to assist intra-specific communication without alerting potential prey to the predator’s presence. We repeatedly exposed a mixed mob of macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control (water) If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials because the scents provided information about the riskiness of the area

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call