Abstract

2-O-phosphorylation of xylose has been detected in the glycosaminoglycan-protein linkage region, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, of proteoglycans. Recent mutant analyses in zebrafish suggest that xylosyltransferase I and FAM20B, a protein of unknown function that shows weak similarity to a Golgi kinase encoded by four-jointed, operate in a linear pathway for proteoglycan production. In the present study, we identified FAM20B as a kinase that phosphorylates the xylose residue in the linkage region. Overexpression of FAM20B increased the amount of both chondroitin sulfate and heparan sulfate in HeLa cells, whereas the RNA interference of FAM20B resulted in a reduction of their amount in the cells. Gel-filtration analysis of the glycosaminoglycan chains synthesized in the overexpressing cells revealed that the glycosaminoglycan chains had a similar length to those in mock-transfected cells. These results suggest that FAM20B regulates the number of glycosaminoglycan chains by phosphorylating the xylose residue in the glycosaminoglycan-protein linkage region of proteoglycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.