Abstract
This study investigated the role of the family with sequence similarity 201-member A (FAM201A), as previously reported oncogenic, in cervical cancer (CC). FAM201A expression in CC was analyzed through bioinformatics analyses, and its distribution in CC tissues/cells was determined by in situ hybridization. CC cells were transfected/cotransfected with FAM201A/flotillin-1 (FLOT1) overexpression plasmids and miR-1271-5p mimics, followed by functional analysis on viability, migration and invasion. Pearson's correlation tests were performed to analyze the correlation between FAM201A and miR-1271-5p in CC tissues. The targeting relationship between miR-1271-5p and FLOT1 was confirmed by dual-luciferase reporter assay. The expressions of FAM201A, miR-1271-5p, FLOT1, matrix metalloproteinases (MMP)-9, MMP-2, E-cadherin, N-cadherin, and the Wnt/β-catenin pathway-related molecules (Wnt1, β-catenin and p-β-catenin) in CC cells or tissues were assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and/or western blot. The results showed that FAM201A was abundantly expressed and miR-1271-5p expression was downregulated in CC. FAM201A was enriched in CC cell cytoplasm and negatively correlated with miR-1271-5p in CC tissues. FAM201A overexpression enhanced the cell viability, migration, invasion, and tumorigenesis of CC in vivo and increased FLOT1 expression. These trends were all reversed by upregulating miR-1271-5p, which induced opposite effects to FAM201A overexpression. MiR-1271-5p upregulation depleted the levels of MMP-9, MMP-2, N-cadherin, and the Wnt/β-catenin pathway-related molecules and upregulated E-cadherin expression. FLOT1 was a direct target of miR-1271-5p. FLOT1 overexpression induced effects contrary to the upregulation of miR-1271-5p and abolished miR-1271-5p upregulation-induced effects in CC cells. Overall, this study showed that FAM201A promoted cervical cancer progression and metastasis by targeting the miR-1271-5p/FLOT1 axis-induced Wnt/β-catenin pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.