Abstract

Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease inhibitor of Plasmodium falciparum, falstatin, based on modest homology with the Trypanosoma cruzi cysteine protease inhibitor chagasin. Falstatin, expressed in Escherichia coli, was a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and nonparasite-derived cysteine proteases, but it was a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Falstatin is present in schizonts, merozoites, and rings, but not in trophozoites, the stage at which the cysteine protease activity of P. falciparum is maximal. Falstatin localizes to the periphery of rings and early schizonts, is diffusely expressed in late schizonts and merozoites, and is released upon the rupture of mature schizonts. Treatment of late schizionts with antibodies that blocked the inhibitory activity of falstatin against native and recombinant falcipain-2 and falcipain-3 dose-dependently decreased the subsequent invasion of erythrocytes by merozoites. These results suggest that P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. This mechanism of regulation of proteolysis suggests new strategies for the development of antimalarial agents that specifically disrupt erythrocyte invasion.

Highlights

  • The genome sequence of Plasmodium falciparum, the most pathogenic human malaria parasite, predicts over 30 cysteine proteases [1]

  • We searched for a gene encoding a putative cysteine protease inhibitor in P. falciparum using the T. cruzi inhibitor chagasin as a probe in a BLAST search

  • We have identified and characterized an endogenous cysteine protease inhibitor of P. falciparum

Read more

Summary

Introduction

The genome sequence of Plasmodium falciparum, the most pathogenic human malaria parasite, predicts over 30 cysteine proteases [1]. Among these predicted proteases, five have been biochemically characterized, four falcipains that closely resemble papain [2,3,4,5] and dipeptidyl aminopeptidase 1, an exopeptidase related to cathepsin C [6]. The best-characterized function for plasmodial cysteine proteases is hemoglobin hydrolysis in erythrocytic trophozoites by falcipain-2 and falcipain-3 [5] Inhibition of these proteases [7], disruption of the falcipain-2 gene [8], or removal of a falcipain-2 hemoglobin-binding domain [9] blocks hemoglobin hydrolysis. Cysteine protease inhibitors blocked the invasion of hepatocytes by P. falciparum sporozoites, probably by blocking the proteolytic cleavage of the circumsporozoite protein [15], and the disruption of a putative cysteine protease gene of Plasmodium berghei prevented sporozoite egress from oocysts [16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call