Abstract

The increasing use of treated wastewater for irrigation heightens the importance of accurate monitoring of water quality. Chromogenic media, because they are easy to use and provide rapid results, are often used for detection of Escherichia coli in environmental samples, but unique levels of organic and inorganic compounds alter the chemistry of treated wastewater, potentially hindering the accurate performance of chromogenic media. We used MI agar and molecular confirmatory methods to assess false-positive identification of E. coli in treated wastewater samples collected from municipal utilities, an irrigation holding pond, irrigated soils, and in samples collected from storm flows destined for groundwater recharge. False-positive rates in storm flows (4.0%) agreed closely with USEPA technical literature but were higher in samples from the pond, soils, and treatment facilities (33.3%, 38.0%, and 48.8%, respectively). Sequencing of false-positive isolates confirmed that most were, like E. coli, of the family Enterobacteriaceae, and many of the false-positive isolates were reported to produce the β-d-glucuronidase enzyme targeted by MI agar. False-positive identification rates were inversely related to air temperature, suggesting that seasonal variations in water quality influence E. coli identification. Knowledge of factors contributing to failure of chromogenic media will lead to manufacturer enhancements in media quality and performance and will ultimately increase the accuracy of future water quality monitoring programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.