Abstract

The molecular structures of the eight-coordinate tungsten hydride complexes W(PMe3)4H2X2 (X = F, Cl, Br, I) and W(PMe3)4H2F(FHF) have been determined by single-crystal X-ray diffraction; W(PMe3)4H2Cl2 and W(PMe3)4H2F(FHF) have also been analyzed by single-crystal neutron diffraction, thereby accurately locating the positions of the hydride ligands. The structures of all of these complexes are similar and are based on a trigonal dodecahedron, with a distorted tetrahedral array of PMe3 ligands in which two of the PMe3 ligands are displaced over the halide substituents. However, the initial structures derived for both W(PMe3)4H2Cl2 and W(PMe3)4H2F(FHF) did not exhibit the aforementioned geometry, but were based on an arrangement in which the two transoid-PMe3 ligands are displaced toward the two cis-PMe3 groups, rather than tilted toward the chloride ligands. Interestingly, the unexpected structures for W(PMe3)4H2Cl2 and W(PMe3)4H2F(FHF) were discovered to be the result of an artifact due to the presence of ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call