Abstract

This work investigates the effect of an insoluble surfactant on the gravity-driven flow of a liquid film down a vertical flexible wall. The paper builds upon previous work [Matar et al., Phys Rev E 76(5):056301, 2007; Sisoev et al., Chem Eng Sci 65(2):950–961, 2010] to include the Marangoni effect attributable to the gradient of surfactant concentration on a free surface. Here we employ an integral method to derive a set of asymptotic evolution equations valid for a moderate flow rate, based on a long-wave approximation. A normal-mode approach is used to examine the linear stability of the system. Similar to the work presented by Matar et al., the results show that a flexible wall with weak damping acts to stabilize flow, while wall tension plays an unstable role. The insoluble surfactant, which acts to stabilize film flow, can reduce the effects of wall flexibility (wall damping and tension) on flow linear stability. The nonlinear evolution equations for the system are solved numerically for both a given initial perturbation wave packet and a periodic perturbation at the inlet boundary. The equations are mainly concerned with the evolution of the flow stability and wave interaction processes, during which solitary-like waveforms are observed. When wall damping is weak, it tends to deplete the ripples preceding the solitary-like humps. However, as wall damping increases in strength, the ripples intensify; a similar phenomenon is observed with an increase in wall tension. The surfactant, which reduces the amplitude and traveling speed of the solitary-like waveforms, acts to distinctly weaken the dispersion of the interfacial wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.