Abstract

Common fall occurrences in the elderly population pose dramatic challenges in public healthcare domain. Adoption of an efficient and yet highly reliable automatic fall detection system may not only mitigate the adverse effects of falls through immediate medical assistance, but also profoundly improve the functional ability and confidence level of elder people. This paper presents a pervasive fall detection system developed on smart phones, namely, FallDroid that exploits a two-step algorithm proposed to monitor and detect fall events using the embedded accelerometer signals. Comprising of the threshold-based method and multiple kernel learning support vector machine, the proposed algorithm uses novel techniques to effectively identify fall-like events (such as lying on a bed or sudden stop after running) and reduce false alarms. In addition to user convenience and low power consumption, experimental results reveal that the system detects falls with high accuracy ( $97.8\%$ and $91.7\%$ ), sensitivity ( $99.5\%$ and $95.8\%$ ), and specificity ( $95.2\%$ and $88.0\%$ ) when placed around the waist and thigh, respectively. The system also achieves the lowest false alarm rate of 1 alarm per 59 h of usage, which is best till date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.