Abstract
A factor seriously endangers the people health is falling, particularly for patients and the elderly. Fall detection systems contribute in preventing the consequences of the late medical aid and injuries endangering the people health. The main problem within fall detection systems is how to correctly distinguish between a fall and the other daily activities. There are various types of fall detection systems each of which has different advantages and disadvantages. Wireless motion-sensor based systems such as accelerometer and gyroscope provide higher efficiency with lower limits. This study introduces a new fall detection method employing motion sensors in smart phones to collect data due to the ease of access and application. To provide high efficiency for people with various ages and conditions, this method also takes advantages of adaptivefuzzy neural networks for learning and inference. These methods correctly detect all 4 types of fall from 9 main daily activity groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Multimedia and Ubiquitous Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.