Abstract

The steady two-dimensional laminar boundary layer flow of a power-law fluid past a permeable stretching wedge beneath a variable free stream is studied in this paper. Using appropriate similarity variables, the governing equations are reduced to a single third order highly nonlinear ordinary differential equation in the dimensionless stream function, which is solved numerically using the Runge–Kutta scheme coupled with a conventional shooting procedure. The flow is governed by the wedge velocity parameter λ, the transpiration parameter f 0, the fluid power-law index n, and the computed wall shear stress is f″(0). It is found that dual solutions exist for each value of f 0, m and n considered in λ − f″(0) parameter space. A stability analysis for this self-similar flow reveals that for each value of f 0, m and n, lower solution branches are unstable while upper solution branches are stable. Very good agreements are found between the results of the present paper and that of Weidman et al. [28] for n = 1 (Newtonian fluid) and m = 0 (Blasius problem [31]).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.