Abstract
This work was conducted to evaluate the compatibility between physicochemical, antioxidant and morphological properties of polysaccharide (FRP) extracted from red marine alga Falkenbergia rufolanosa reinforced by poly (vinyl alcohol) (PVA) composed films at different ratios of FRP/PVA: F1 (70:30), F2 (50:50), F3 (30:70) and PVA (100% PVA) and the potential wound healing effects. As assessed, FRP/PVA prepared films were heterogeneous, slightly opaque with a rough surface as ascertained by Fourier transform infrared spectroscopy, scanning electron microscopy and colorimetric parameters. Even, X-ray diffraction and glass transition results revealed a semi-crystalline structure of FRP composed films which decreased with increasing PVA ratios. The antioxidant activities of composite films depicted that F1 exhibited the highest antioxidant activity in vitro. Therefore, F1 was found to promote significantly the wound healing, after eight days of treatment, evidenced by higher wound appearance scores and a higher content of collagen (885.12 ± 20.35 mg/g of tissue) confirmed by histological examination, when compared with control, CYTOL BASIC® and PVA-treated groups. All together, the marine-derived polysaccharide gave a substantial pledge for the development of biodegradable films as a potent antioxidant material and a promising agent for tissue regeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.