Abstract

Studies have shown that researchers have proposed various applications for Safe driving using different driving activities and events. This research considered pothole as one of the challenging factors for safe driving therefore it looked into deploying a mobile application for monitoring potholes as an important tool for safe driving. Automating pothole detection will go a long way in providing safe driving for road users and intelligent transportation systems. This paper presents a safe driving application that assists drivers by detecting and predicting potholes while on the road to curb road accidents in Nigeria. The datasets used in this research were potholes images extracted from kaggle which were classified into two; potholes and normal roads. The object detection algorithm that was used to evaluate the model is YOLOv5. The results proved that our model was not perverse. We deployed the model to the mobile application, the mobile application when launched activates the camera by default enabling the system to detect and predict between normal roads and potholes. The predicted values were all positive. The two classifiers were all detected perfectly in real-time while testing without being perverse. The system presents its predicted value in percentage, therefore showing the level of adherence to each of the classes detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.