Abstract
With the increase in social networks, more number of people are creating and sharing information than ever before, many of them have no relevance to reality. Due to this, fake news for various political and commercial purposes are spreading quickly. Online newspaper has made it challenging to identify trustworthy news sources. In this work, Hindi news articles from various news sources are collected. Preprocessing, feature extraction, classification and prediction processes are discussed in detail. Different machine learning algorithms such as Naïve Bayes, logistic regression and Long Short-Term Memory (LSTM) are used to detect the fake news. The preprocessing step includes data cleaning, stop words removal, tokenizing and stemming. Term frequency inverse document frequency(TF-IDF) is used for feature extraction. Naïve Bayes, logistic regression and LSTM classifiers are used and compared for fake news detection with probability of truth. It is observed that among these three classifiers, LSTM achieved best accuracy of 92.36%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.