Abstract

This study aimed to investigate the mechanism of FAK-dependent hypoxia-induced proliferation on human pulmonary artery smooth muscle cells (HPASMCs). Primary HPASMCs were isolated and cultured invitro under normal and hypoxia conditions to assess cell proliferation with cell counting kit-8. FAK and mitochondrial transcription termination factor 1 (mTERF1) were silenced with siRNA, mRNA, and protein levels of FAK, mTERF1, and cyclin D1 were determined. HPASMC proliferation increased under hypoxia compared to normal conditions. Knocking down FAK or mTERF1 with siRNA led to decreased cell proliferation under both normal and hypoxia conditions. FAK knockdown led to the reduction of both mTERF1 and cyclin D1 expressions under the hypoxia conditions, whereas mTERF1 knockdown led to the downregulation of cyclin D1 expression but not FAK expression under the same condition. However, under normal conditions, knocking down either FAK or mTERF1 had no impact on cyclin D1 expression. These results suggested that FAK may regulate the mTERF1/cyclin D1 signaling pathway to modulate cell proliferation in hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call