Abstract

The formal methods of the representational theory of measurement (RTM) are applied to the extensive scales of physical science, with some modifications of interpretation and of formalism. The interpretative modification is in the direction of theoretical realism rather than the narrow empiricism which is characteristic of RTM. The formal issues concern the formal representational conditions which extensive scales should be assumed to satisfy; I argue in the physical case for conditions related to weak rather than strong extensive measurement, in the sense of Holman 1969 and Colonius 1978. The problem of justifying representational conditions is addressed in more detail than is customary in the RTM literature; this continues the study of the foundations of RTM begun in an earlier paper. The most important formal consequence of the present interpretation of physical extensive scales is that the basic existence and uniqueness properties of scales (representation theorem) may be derived without appeal to an Archimedean axiom; this parallels a conclusion drawn by Narens for representations of qualitative probability. It is concluded that there is no physical basis for postulation of an Archimedean axiom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.