Abstract
Recent works in artificial intelligence fairness attempt to mitigate discrimination by proposing constrained optimization programs that achieve parity for some fairness statistics. Most assume the availability of class label which is impractical in many real-world applications such as precision medicine, actuarial analysis and recidivism prediction. To this end, this talk revisits fairness and reveals idiosyncrasies of existing fairness literature assuming the availability of class label that limits their real-world utility. The primary artifacts are formulating fairness with censorship to account for scenarios where the class label is not guaranteed, and a suite of corresponding new fairness notions, algorithms, and theoretical constructs to bridge the gap between the design of a ``fair'' model in the lab and its deployment in the real-world.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.