Abstract

Small cell is an emerging and promising technology for improving hotspots coverage and capacity, which tends to be densely deployed in populated areas. However, in a dense small cell network, the performances of users differ vastly due to the random deployments and the interferences. To guarantee fair performance among users in different cells, we propose a new distributed strategy for fairness constrained power control, referred to as the diffusion adaptive power control (DAPC). DAPC achieves overall network fairness in a distributed manner, in which each base station optimizes a local fairness with little information exchanged with neighboring cells. We study several adaptive algorithms to implement the proposed DAPC strategy. To improve the efficiency of the standard least mean square algorithm (LMS), we derive an adaptive step-size logarithm LMS algorithm, and discuss its convergence properties. Simulation results confirm the efficiency of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.