Abstract
Input buffered switch architecture has become attractive for implementing high performance switches for workstation clusters. It is challenging to provide a scheduling technique that is both highly efficient and fair in resource allocation. In this paper, we first introduce an iterative Fair Scheduling (iFS) scheme for input buffered switches that supports fair bandwidth distribution among the flows and achieves asymptotically 100% throughput. We then apply the idea of fair scheduling to switches with multicasting capability and propose an mFS scheme which allocates bandwidth to various flows according to their reservations. We show that mFS produces throughput comparable to the existing schemes while distributing the bandwidth as per the given reservations. Extensive simulation results are presented to validate the effectiveness of our proposed schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.