Abstract
In prior work on soft real-time (SRT) multiprocessor scheduling, tardiness bounds have been derived for a variety of scheduling algorithms, most notably, the global earliest-deadline-first (G-EDF) algorithm. In this paper, we devise G-EDF-like (GEL) schedulers, which have identical implementations to G-EDF and therefore the same overheads, but that provide better tardiness bounds. We discuss how to analyze these schedulers and propose methods to determine scheduler parameters to meet several different tardiness bound criteria. We employ linear programs to adjust such parameters to optimize arbitrary tardiness criteria, and to analyze lateness bounds (lateness is related to tardiness). We also propose a particular scheduling algorithm, namely the global fair lateness (G-FL) algorithm, to minimize maximum absolute lateness bounds. Unlike the other schedulers described in this paper, G-FL only requires linear programming for analysis. We argue that our proposed schedulers, such as G-FL, should replace G-EDF for SRT applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.