Abstract

Recent evidence suggests that reward prediction errors (RPEs) play an important role in declarative learning, but its neurophysiological mechanism remains unclear. Here, we tested the hypothesis that RPEs modulate declarative learning via theta-frequency oscillations, which have been related to memory encoding in prior work. For that purpose, we examined the interaction between RPE and transcranial Alternating Current Stimulation (tACS) in declarative learning. Using a between-subject (real versus sham stimulation group), single-blind stimulation design, 76 participants learned 60 Dutch-Swahili word pairs, while theta-frequency (6 Hz) tACS was administered over the medial frontal cortex (MFC). Previous studies have implicated MFC in memory encoding. We replicated our previous finding of signed RPEs (SRPEs) boosting declarative learning; with larger and more positive RPEs enhancing memory performance. However, tACS failed to modulate the SRPE effect in declarative learning and did not affect memory performance. Bayesian statistics supported evidence for an absence of effect. Our study confirms a role of RPE in declarative learning, but also calls for standardized procedures in transcranial electrical stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.