Abstract

Populations of long-distance migrants that breed in seasonal habitats can be significantly impacted by climate change. We examined the migratory and breeding phenologies of the cerulean warbler (Setophaga cerulea), a declining long-distance Nearctic-Neotropical migrant that breeds in deciduous forests of Indiana. Our primary objectives were to determine temporal trends in cerulean warbler migratory timing, and to identify climate variables that explain variation in this species' migratory and breeding phenologies. We reviewed trends in cerulean warbler first arrival to Indiana from 1982 to 2019, and compared them to several explanatory climate variables: spring temperature, growing degree days (GDD), North Atlantic Oscillation (NAO) index, and Oceanic Niño Index (ONI). We also compared the timing of cerulean warbler first lay dates from 2012 to 2019 with the aforementioned climate variables and annual spring precipitation. Cerulean warblers exhibited a minimal advance in first arrival timing (≤4 days in 38 years). Arrival timing was best predicted by GDD and a null model, but trends in GDD indicate that spring warming in Indiana has advanced by a greater margin, approximately 14 days. Climate variables did not predict first lay timing better than a null model. Springtime in Indiana is occurring earlier, but cerulean warblers are advancing their migratory timing to a much smaller degree. This failure to adapt may have a detrimental effect on warbler populations if it results in an asynchronization of important biological timings between them and their prey. Further studies of cerulean warbler breeding and prey phenologies are necessary to determine how climate change is impacting this species' reproductive success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call