Abstract
Structural health monitoring is a popular inspection method that utilizes acoustic emission (AE) signals for fault detection in engineering infrastructures. Diagnosis based on the propagation of AE signals along any surface material offers an attractive solution for fault identification. However, the classification of AE signals originating from failure events, especially coating failure (coating disbondment), is a challenging task given the AE signature of each material. Thus, different experimental settings and analyses of AE signals are required to classify the various types of coating failures, and they are time-consuming and expensive. Hence, to address these issues, we utilized machine learning (ML) classification models in this work to evaluate epoxy-based-protective-coating disbondment based on the AE principle. A coating disbondment experiment consisting of coated carbon steel test panels for the collection of AE signals was implemented. The obtained AE signals were then processed to construct the final dataset to train various state-of-the-art ML classification models to divide the failure severity of coating disbondment into three classes. Consequently, methods for the extraction of useful features, the handling of data imbalance, and a reduction in the bias of ML models were also effectively utilized in this study. Evaluations of state-of-the-art ML classification models on the AE signal dataset in terms of standard metrics revealed that the decision forest classification model outperformed the other state-of-the-art models, with accuracy, precision, recall, and F1 score values of 99.48%, 98.76%, 97.58%, and 98.17%, respectively. These results demonstrate the effectiveness of utilizing ML classification models for the failure severity prediction of protective-coating defects via AE signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.