Abstract

This paper presents a generic data-driven failure prognosis method based on adaptive state space models for engineering systems, which integrates adaptive model recognition with a dynamic system model for remaining useful life prediction. The developed approach employs a statistical learning framework for adaptively learning of time-series degradation performance, and then a Bayesian technique for self-updating of data-driven models to adapt the operational or environmental changes. With the developed approach, the prognosis technique can eliminate the dependence to system specific models and be adaptive to system performance changes due to degradation or variation of system operational conditions, thereby yielding accurate remaining useful life predictions. The developed methodology is demonstrated by an engineering case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.