Abstract
Our aim in this study is to investigate the failure process in heterogeneous materials with randomly oriented fibers. In our proposed system, the fiber bundle model assumes that all the fibers are randomly oriented in all directions relative to the vertical one. Our calculations are performed in the framework of the local load-sharing rule, which states that the applied load of a broken fiber is redistributed only to its neighboring ones. The results show that this system presents a greater resistance than the classical one where the fibers are arranged parallel to the applied load. We found that the density of the broken fibers exhibited a power law and was linearly correlated with the applied load and temperature. However, the results show that the failure process of the considered system is characterized by an avalanche phenomenon with two different regimes. We also studied the crossover behavior of lifetime of the materials versus both applied load and temperature. We compared these results with those obtained from the classical model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.