Abstract
ABSTRACTIn the classical approach to qualitative reliability demonstration, system failure probabilities are estimated based on a binomial sample drawn from the running production. In this paper, we show how to take account of additional available sampling information for some or even all subsystems of a current system under test with serial reliability structure. In that connection, we present two approaches, a frequentist and a Bayesian one, for assessing an upper bound for the failure probability of serial systems under binomial subsystem data. In the frequentist approach, we introduce (i) a new way of deriving the probability distribution for the number of system failures, which might be randomly assembled from the failed subsystems and (ii) a more accurate estimator for the Clopper–Pearson upper bound using a beta mixture distribution. In the Bayesian approach, however, we infer the posterior distribution for the system failure probability on the basis of the system/subsystem testing results and a prior distribution for the subsystem failure probabilities. We propose three different prior distributions and compare their performances in the context of high reliability testing. Finally, we apply the proposed methods to reduce the efforts of semiconductor burn-in studies by considering synergies such as comparable chip layers, among different chip technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.