Abstract

Low temperature and high pressure line pipes are widely used in hydrogen storage, air separation plant, liquefied natural gas (LNG) transportation etc. The material properties of pipes at low temperature are different from those at room temperature. If the medium in the pipe is corrosive, it will cause the pipe wall thickness to decrease. However, the failure pressure of the corroded hydrogen storage pipeline at extremely low temperature is lacking of adequate understanding. In this paper, we provided a novel failure pressure equation of the mild steel line pipe with corrosion defects at extremely low temperature. Firstly, a mechanical model of the line pipe with corrosion defects is established. And then, an analytical solution of the mechanical model is obtained based on elastic theory. Next, a failure pressure equation of the corroded hydrogen storage pipeline at extremely low temperature is developed. In the end, the accuracy of the failure pressure equation is verified by comparing with finite element method (FEM). The results suggest that the calculated value of the failure pressure equation is consistent with that of FEM. This paper provides a theoretical basis for the safety assessment of low temperature hydrogen storage pipeline. The new equation presented in this paper can provide useful guidance for the design of low temperature and high pressure pipelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call