Abstract

An important concern in metal forming is whether the desired deformation can be accomplished without defects in the final product. Various ductile fracture criteria have been developed and experimentally verified for a limited number of cases of metal forming processes. These criteria are highly dependent on the geometry of the workpiece and cannot be utilized for complicated shapes without experimental verification. However, experimental work is a resource hungry process. This paper proposes the ability of finite element analysis (FEA) software such as LS-DYNA to pinpoint the crack-like flaws in bulk metal forming products. Two different approaches named as arbitrary Lagrangian-Eulerian (ALE) and smooth particle hydrodynamics (SPH) formulations were adopted. The results of the simulations agree well with the experimental work and a comparison between the two formulations has been carried out. Both approximation methods successfully predicted the flow of workpiece material (plastic deformation). However ALE method was able to pinpoint the location of the flaws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.