Abstract
Quantitative stability evaluation of multi-tunnel structure is an important issue related to the safety assessment and stable construction of geotechnical underground tunnels. In this work, the overall failure process of twin tunnels were exhibited by a physical simulation based on the 3D printing (3DP) sandstone analogues model, and a safety factor method was also presented for evaluating the general safety of multi-tunnel structure. For checking the 3DP material performance of physical model, uniaxial and triaxial compressions for the 3DP cylinder specimens were first tested and showed that their mechanical properties and failure characteristics were similar to natural rock in general. Then, the overloading tests for twin-tunnel model were carried out and have exposed the critical position of overall failure of twin-tunnel structure through visual observation and automatic measurement. Testing results and corresponding numerical back analysis indicated that the connectivity of plastic strain between tunnels can be deemed as the conservative instability criterion (i.e. yielding of material) and the inflection point of tunnels’ displacement can be deemed as overall failure criterion (i.e. structure failure) for twin-tunnel structure. The safety analysis for underground hydraulic caverns indicated that this method can provide a reference for quantitative and reasonable evaluation of the general safety of multi-tunnels or caverns and the local instability zone of surrounding rock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.