Abstract
Experiments have been performed to examine the ductility of Zircaloy 4 cladding tubes under conditions of near plane-strain deformation in the hoop direction (transverse to the tube axis) at temperatures of 25 and 300°C and at strain rates of 10 −3 and 10 2 s −1. To conduct these experiments, a specimen configuration was designed in which near plane-strain deformation is achieved, and a test methodology was established to determine two failure conditions: the limit strain at the onset of localized necking and the fracture strain. Experiments performed on cold-worked stress relieved material using the transverse plane-strain specimen geometry indicate major differences in failure behavior from that observed in uniaxial tension, although both test conditions result in failure by a localized necking process. The experimental results also indicate that while plane-strain fracture strains increase with temperature between 25 and 300°C, at a given temperature they are insensitive to strain rate. The limit strains at localized necking also increase with temperature but only at the high 10 2 s −1 strain rate. Finally, the failure data indicate a strong sensitivity to surface flaws, as predicted by localized necking theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.