Abstract

This study was undertaken to investigate and understand the behavior of a wrinkled energy pipeline when subjected to sustained monotonic axial compressive deformation. This study involved both experimental and numerical investigations. Two full-scale laboratory tests with moderate and high internal pressures on X52 grade steel pipes with a diameter-to-thickness ratio of 45 show that this pipeline is extremely ductile and did not rupture under axisymmetric compressive axial deformation. However, they fail due to the excessive cross-sectional deformation and the final deformed shape looks like an accordion due to the formation of multiple wrinkles. Subsequently, a detailed parametric study using a numerical technique was undertaken to determine the failure condition and failure mode of this pipeline for various realistic internal pressures and diameter-to-thickness ratios. A nonlinear finite element method was used for the numerical study. The numerical model was validated with the data obtained from the two full-scale tests. The parametric study shows that the X52 linepipe loses its integrity due to the rupture in the pipe wall if the internal pressure is low and/or if the pipe has a small diameter-to-thickness ratio. This paper presents and discusses the results obtained both from the experimental and numerical parametric studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call