Abstract
Trabecular bone plays an important role in structural integrity of bone tissues. Its complex microstructure characterised by high porosity and intricate composition with multiple trabeculae is a challenge for analysis of fracture initiation and propagation in it. This work investigates mechanical behaviour and failure of representative volume elements (RVEs) of porous structure of trabecular bone using numerical simulations. The extended finite-element method (XFEM) is used together with an original algorithm for the growth of multiple cracks in individual trabeculae of the structure. The obtained results are presented in comparison with the model of degradation of elastic properties. The effect of morphology on accumulation of damage and crack growth - both on the scale of a RVE and in individual ligaments - was investigated using the developed approach for estimation of a relative crack-surface area. The results are presented for five RVEs, obtained with high-resolution computed tomography of human trabecular bone, subjected to applied tensile and compressive loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.