Abstract

Cai in cultured human sweat gland epithelial monolayers was measured using Fura-2 fluorescence. Thapsigargin (Tg) caused a sustained increase in Cai, the rate of rise being slower but the magnitude greater than with the agonists lysylbradykinin and ATP. Tg caused an irreversible change such that even after it was removed Cai was dependent on the ambient calcium concentration, consistent with the hypothesis that Ca2+ entry is controlled by the state of the intracellular stores. Calcium entry after Tg was not modified by nimodipine, omega-conotoxin, or BAY K8644 but could be blocked by low concentrations (0.5 mM) of La3+. High concentrations of La3+ (2 mM) caused an increase in the response to Tg, suggesting that membrane ATPase exerts a major Cai lowering effect. Intracellular Ca2+ ion chelation with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid significantly blunted the response to Tg. Finally, Mn2+ entry rate into epithelial cells was doubled by Tg. In spite of the evidence that Tg raises Cai to values greater and for longer than calcium requiring agonists only the latter affected transepithelial transport processes. It is shown that Tg neither affects transepithelial sodium transport nor chloride conductance, both of which increase in response to lysylbradykinin or ATP. It is concluded that spatio-temporal patterns of Cai increase after Tg and other agonists are different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.