Abstract

BackgroundIn human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1 and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however poorly understood.Methodology/Principal FindingsWe show that a human embryonal carcinoma cell line (NT2/D1) can model events in presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1, suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9 proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES.Conclusions/SignificanceWe demonstrate how three human sex-determining factors are likely to function during gonadal development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate SOX9 transcription.

Highlights

  • disorders of sex development (DSD) are among the most common genetic diseases in humans referring to a group of congenital conditions in which the development of the chromosomal, gonadal or anatomical sex has been abnormal [1]

  • It has been proposed that SRY acts in pre-mRNA processing [29], in our study, and in agreement with others [33], Flag-SRY protein does not co-localize with splicing factor SC-35 (Fig. 1C, lower panel)

  • The key event that defines testis determination is the male-specific upregulation of SOX9

Read more

Summary

Introduction

DSDs are among the most common genetic diseases in humans referring to a group of congenital conditions in which the development of the chromosomal, gonadal or anatomical sex has been abnormal [1]. Mutations in the key testis-determining factor SRY result in 46,XY DSD. The incidence of SRY mutations in 46,XY DSD is quite small (10–15%) and does support the notion that genes other than SRY are essential for proper testis development. Despite the ongoing identification of a number of these key testis-determining genes [4], most of which are transcription factors, the actions, co-factors and downstream targets of human SRY have proven difficult to ascertain. Loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. Regulation of SOX9 in human sex determination is poorly understood

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.