Abstract
The maximum likelihood method is a basic statistical technique for estimating parameters and variables, and is the starting point for many more sophisticated methods, like Bayesian methods. This paper shows that maximum likelihood fails to identify the true trajectory of a chaotic dynamical system, because there are trajectories that appear to be far more (infinitely more) likely than truth. This failure occurs for unbounded noise and for bounded noise when it is sufficiently large and will almost certainly have consequences for parameter estimation in such systems. The reason for the failure is rather simple; in chaotic dynamical systems there can be trajectories that are consistently closer to the observations than the true trajectory being observed, and hence their likelihood dominates truth. The residuals of these truth-dominating trajectories are not consistent with the noise distribution; they would typically have too small standard deviation and many outliers, and hence the situation may be remedied by using methods that examine the distribution of residuals and are not entirely maximum likelihood based.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.