Abstract

On any reasonable definition of functions, neither the category of sets nor the category of small categories is cartesian closed in New Foundations (NF). The latter category is sometimes proposed as a foundation for category theory since it is among its own objects. Our result shows it is a poor one.In NF, as in other set theories, a "function" f from a set A to a set B is defined to be a set f of ordered pairs 〈x, y〉 with x in A and y in B, such that (a) if 〈x, y〉 ∈ f and 〈x, y′〉 ∈ f then y = y′, and (b) for every x in A there is some y in B with 〈x, y〉 ∈ f. But in NF different definitions of ordered pairs give significantly different functions. I say a reasonable definition must give:1. The formula z = 〈x, y〉 is stratifiable.2. For every set S there is a set {〈x, x〉 ∣ x ∈ S}.3. If f is a function from A to B, and g one from B to C, there is a set {〈x, z〉∣(∃y)〈x, y〉∈ f & 〈y, z〉∈ g}.Principles 2 and 3 are needed for identity functions and composites. By principle 1, any sets A and B have a set A × B of all ordered pairs 〈x, y〉 with x in A and y in B, but it does not follow that functions exist making A × B a categorical product of A and B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.