Abstract

Δ 9-Tetrahydrocannabinol (THC), the primary active compound in Cannabis sativa (marihuana), and other cannabinoid receptor agonists exert potent effects on luteinizing hormone and prolactin release in animal models and humans. Compounds possessing the tricyclic cannabinoid structure, including Δ 9-THC and cannabidiol, have been reported to interact with rodent uterine estrogen receptors in ligand binding assays. The present study tested the hypothesis that cannabinoid compounds produce a direct activation of estrogen receptors. We investigated whether cannabinoid compounds exhibit estrogen-induced mitogenesis in MCF-7 breast cancer cells. Under conditions in which 10 pM estradiol promoted MCF-7 cell proliferation, no response was observed with biologically relevant concentrations (⩽10 μM) of Δ 9-THC or its tricyclic analog desacetyllevonantradol. No response was observed with cannabidiol, a bicyclic cannabinoid compound that exhibits no cannabimimetic behavioral effects but has been reported to bind to the estrogen receptor in vitro. Δ 9-THC also failed to antagonize the response to estradiol under conditions in which the antiestrogen LY156758 (keoxifene; raloxifene) was effective. The phytoestrogen formononetin behaved as an estrogen at high concentrations, and this response was antagonized by LY156758. We also investigated the ability of cannabinoid compounds to stimulate transcription of an EREtkCAT reporter gene transiently transfected into MCF-7 cells. Neither Δ 9-THC, desacetyllevonantradol, nor cannabidiol stimulated transcriptional activity. We conclude that psychoactive or inactive compounds of the cannabinoid structural class fail to behave as agonists in appropriate assays of estrogen receptor responses in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.