Abstract

We have previously demonstrated that Tenascin-C (TNC)(+) human neuroblastoma (NB) cells transdifferentiate into tumor-derived endothelial cells (TDEC), which have been detected both in primary tumors and in tumors formed by human NB cell lines in immunodeficient mice. TDEC are genetically unstable and may favor tumor progression, suggesting that their elimination could reduce tumor growth and dissemination. So far, TDEC have never been targeted by antibody-mediated immunotherapy in any of the tumor models investigated. To address this issue, immunodeficient mice carrying orthotopic NB formed by the HTLA-230 human cell line were treated with TDEC-targeting cytotoxic human (h)CD31, that spares host-derived endothelial cells, or isotype-matched mAbs. hCD31 mAb treatment did not affect survival of NB-bearing mice, but increased significantly hypoxia in tumor microenvironment, where apoptotic and proliferating TDEC coexisted, indicating the occurrence of vascular remodeling. Tumor cells from hCD31 mAb treated mice showed i) up-regulation of epithelial-mesenchymal transition (EMT)-related and vascular mimicry (VM)-related gene expression, ii) expression of endothelial (i.e. CD31 and VE-cadherin) and EMT-associated (i.e. Twist-1, N-cadherin and TNC) immunophenotypic markers, and iii) up-regulation of high mobility group box-1 (HMGB-1) expression. In vitro experiments with two NB cell lines showed that hypoxia was the common driver of all the above phenomena and that human recombinant HMGB-1 amplified EMT and TDEC trans-differentiation. In conclusion, TDEC targeting with hCD31 mAb increases tumor hypoxia, setting the stage for the occurrence of EMT and of new waves of TDEC trans-differentiation. These adaptive responses to the changes induced by immunotherapy in the tumor microenvironment allow tumor cells to escape from the effects of hCD31 mAb.

Highlights

  • Tumor growth is critically dependent on adequate blood supply provided by newly formed endothelial micro-vessels (EM) [1,2,3]

  • We investigated the angiogenic phenotype of tumors from hCD31 mAb treated (n=4) vs control (n=4) mice using PCR arrays specific for selected human or mouse angiogenic transcripts. hCD31 mAb treatment caused up-regulation of the expression of different human pro-angiogenic genes including CCL11, CXCL3, CXCL5, cadherin 5 (CDH5), known as vascular endothelial (VE)-cadherin, collagen type IVα3 (COL4A3), vascular endothelial growth factor (VEGF), platelet derived growth factor-A

  • Tenascin C (TNC)+ perivascular NB cells serving as tumor-derived endothelial cells (TDEC) progenitors have been identified in primary NB samples, metastatic bone marrow aspirates, NB cell lines, and orthotopic tumors formed by these cell lines in immunodeficient mice [8,9,10]

Read more

Summary

Introduction

Tumor growth is critically dependent on adequate blood supply provided by newly formed endothelial micro-vessels (EM) [1,2,3]. Tumor cells themselves may contribute to vascularization by assembling into vascularlike channels according to a process referred to as vascular mimicry (VM). We previously identified in primary NB tumors, as well as in orthotopic tumors formed in immunodeficient mice by different human NB cell lines, tumor-derived endothelial cells (TDEC) harboring MYCN amplification as the NB cells from which they originated [8,9,10]. TDEC are genetically unstable and contribute to chemoresistance and tumor progression [11]. Hypoxia inducible factors regulate hypoxia responsive genes and play critical roles in tumor invasion, metastasis, and chemoresistance [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.