Abstract
Abstract This work investigates the effects of grain boundary oxidation on the failure of AISI 304H stainless steel elbows in a heat exchanger in a power plant after 8 years of service at 400 °C. Optical and electron microscopes, elemental mapping, electron dispersive spectroscopy (EDS), inductively-coupled plasma atomic energy spectroscopy (ICP-AES) and hardness tester were used to understand the failure mechanism. Elemental mapping of the samples operating for 8 years showed high concentrations of oxygen and carbon at the grain boundaries. Results showed that cracks were propagated along the grain boundaries due to the brittleness of the oxide layer at the boundaries. Results confirmed the intergranular and brittle nature of the fracture. Microhardness profilometry showed that oxidized/carburized grain boundaries are significantly harder than matrix inside grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.