Abstract

An algorithm for the burst detection and location in water distribution networks based on the continuous monitoring of the flow rate at the entry point of the network and the pressure at a number of points within the network is presented. The approach is designed for medium to large bursts with opening times in the order of a few minutes and is suitable for networks of relatively small size, such as district metered areas (DMAs). The burst-induced increase in the inlet flow rate is detected using the modified cumulative sum (CUSUM) change detection test. Based on parameters obtained from the CUSUM test, the burst is simulated at a number of burst candidate locations. The calculated changes in pressure at the pressure monitoring points are then compared to the measured values and the location resulting in the best fit is selected as the burst location. The EPANET steady-state hydraulic solver is utilised to simulate the flows and pressures in the network. A sensitivity-based sampling design procedure is introduced to find the optimal positions for pressure monitoring points. The proposed algorithm is tested on a case study example network and shows potential for burst detection and location in real water distribution systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.