Abstract
Turbine-generator shafts are often subjected to a complex transient torsional loading. Such a torsional loading may initiate yielding at the outer radius of the shaft or in the fillets. The methods for predicting turbine-shaft fatigue life due to transient loading depent upon the mode of crack growth from an undetected crack. The most common location for the existence of a crack is the fillets or shoulders of the shaft. Specimens were designed from AISI 4340 steel with two diametrically opposed flat surfaces. Initial defect orientations of 0 deg, 45 deg and 90 deg with respect to the sepcimen axis on the fillet were studied. The specimens were subjected to cyclic torsion with zero mean torque and with a torque amplitude necessary to cause yielding at the outer radius of the specimen. When initial defects were aligned with a plane of maximum shear stress (0 deg and 90 deg), the cracks propagated along that plane. For 45-deg defects (aligned to a plane of maximum tensile stress) the crack still propagated along the plane of maximum shear. However, the number of cycles to initiate and to propagate the crack to failure for 45-deg defects were (two to three times) larger than those for 0-deg and 90-deg defects. Mode II and Mode III crack-growth rates were measured from specimens containing 0-deg and 90-deg defects. It was found that the crack-growth rate in Mode II was higher than in Mode III. However, all the specimens failed due to reduction of the net cross section, mostly attributed to Mode III crack growth. Similar results were obtained from specimens of turbine-shaft material (A469 steel), and 2024 aluminum with different rolling directions. Fatigue-crack-growth rates in Mode III were measured from circumferentially notched bar. They were found to be a unique function of ΔK III alternating stress intensity in Mode III. It was found that the mechanism of crack growth is produced by the formation and linkage of elongated cavities at the crack tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.