Abstract

The lack of equitable access to radiotherapy (RA) linear accelerators (LINACs) is a substantial barrier to cancer care in low- and middle-income countries (LMICs). These nations are expected to bear up to 75% of cancer-related deaths globally by 2030. State-of-the-art LINACs in LMICs experience major issues in terms of robustness, with mechanical and electrical breakdowns resulting in downtimes ranging from days to months. While existing research has identified the higher failure frequency and downtimes between LMICs (Nigeria, Botswana) compared to high-income countries (HICs, the UK), there has been a need for additional data and study particularly relating to multileaf collimators (MLCs). This study presents for the first time the analysis of data gathered through a dedicated survey and workshop including participants from 14 Indonesian hospitals, representing a total of 19 LINACs. We show the pathways to failure of radiotherapy LINACs and frequency of breakdowns with a focus on the MLC subsystem. This dataset shows that LINACs throughout Indonesia are out of operation for seven times longer than HICs, and the mean time between failures of a LINAC in Indonesia is 341.58 h or about 14 days. Furthermore, of the LINACs with an MLC fitted, % of all mechanical faults are due to the MLC, and % of cases requiring a replacement component are related to the MLC. These results highlight the pressing need to improve robustness of RT technology for use in LMICs, highlighting the MLC as a particularly problematic component. This work motivates a reassessment of the current generation of RT LINACs and demonstrates the need for dedicated efforts toward a future where cancer treatment technology is robust for use in all environments where it is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.