Abstract
ABSTRACTMineralized biological materials such as nacre and bone achieve remarkable combinations of stiffness and toughness through staggered arrangements of stiff components bonded by softer materials. These natural composites are therefore substantial source of inspiration for emerging synthetic materials. In order to gain new insights into structureperformance relationships of these staggered structures, nacres from four species were compared in terms of fracture toughness and damage propagation pattern. Fracture tests revealed that all nacres display rising crack resistance curves, but to different extents. Using in-situ optical and atomic force microscopy, two distinct patterns of damage propagation were identified in columnar and sheet nacre respectively. These two different patterns were further confirmed by means of large scale numerical models of staggered structures. Similar mechanisms possibly operate at the smallest scales of the microstructure of bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.