Abstract

Failure Mode and Effect Analysis (FMEA) is an effective risk analysis and failure avoidance approach in the design, process, services, and system. With all its benefits, FMEA has three limitations: failure mode risk assessment and prioritization, complex FMEA worksheets, and difficult application of FMEA tables. This paper seeks to overcome the shortcomings of FMEA using an integrated approach based on a developed Pythagorean fuzzy (PF) k-means clustering algorithm and a popular MCDM method called PF-VIKOR. In the first step, Pythagorean fuzzy numbers (PFNs) were used to collect Severity (S), Occurrence (O), and Detection (D) factors for failure modes to incorporate uncertainty and fuzziness into subjective judgments. Afterward, failure modes were clustered by developing a novel k-means clustering algorithm that accepts PFNs as input. Finally, the PF-VIKOR approach was used to analyze the ordering of cluster risks. The proposed approach was implemented in the dehydration unit of an Iranian gas refinery and the results were compared with the traditional FMEA. The findings showed the flexibility and applicability of the proposed approach in addressing real-world problems. This research provides two key contributions: (1) designing a PFN-based k-means clustering algorithm that tackles FMEA limitations and (2) using the PF-VIKOR method for prioritizing and evaluating failure mode clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.